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Chapter 1

INTRODUCTION

1.0 Introduction

In the spectral estimation of signals one comes across a

problem when components of the spectral response are spaced

closely together, and the problem is further complicated

when the signal is noisy. There is a point up to which it

is possible to resolve two pulses that are placed closely

together. Beyond this point it can only be done if some a

priori information is given about the signal. The point

at which it becomes difficult without a priori knowledge

can be obtained from the sampling theorem, and is given by

T.B=0.5 (1.0-1)

where the T represents the duration of time that the sig-

nal is observed, and B is the bandwidth of the signal.

Equation (1.0-1) states that the limiting time-bandwidth

product is equal to 0.5. If the product is greater than

0.5 it is possible to obtain a good estimate of the spe-

ctrum even when noise is present. On the other hand, if

the product is less than 0.5 it is extremely difficult to

%'p
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resolve two peaks that are spaced closely together. The

only way to be able to resolve the two peaks is to have

knowledge about the signal. This knowledge can then be

formulated to give one a set of linear equations with

equality and inequality constraints. These equations along

with a minimizing procedure can be used to obtain or im-

prove the esimate. In this thesis we show a method to

obtain an estimate of two closely spaced pulses in the

spectral domain when the time-bandwidth product is less

than 0.5. The knowledge that we assume is that there are

only two pulses in the frequency domain.

. '- In signal processing there is a class of signals that one

comes across having the property that they only exist for

positive time. This class of signals are termed causal.

! .If the signal is also real, then there is a special re-

lationship between the real arl imaginary parts of its

Fourier transform. The relationship that exists is that

the real and imaginary parts of the Fourier transform are

related by the Hilbert transform. From this one need only

5know the real or imaginary part of the spectrum and the

other part can be easily calculated. The dual to this is

that the spectrum contains only real components for posi-

.-. tive frequencies. Then the real and imaginary parts of the

time signal are related through the Hilbert transform.

This type of time signal is given the name analytic. One
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V iof the uses of the Hilbert transform is in the area of

O phase retrieval. The problem can be stated that given

sonly the modulus of a signal, whether it be in the time or

frequency domains, determine the phase. Under the con-

ditions that the signals are analytic or causal, the

Hilbert transform holds between the modulus and phase. It

is a well known fact that when determining the phase, if

the signal has zeros that occur in the upper half of the

complex z-plane, then the phase cannot be found. For this

reason processing of the modulus has to be performed before

or after the estimate cf the phase has been obtained.

do

-C. 1.1 Spectral Estimation of Two Pulses

When it is desired to resolve two pulses spaced closely

together with a time-bandwidth product of less than 0.5,

more information has to be known a priori. The infor-

mation that we are given is that there are two pulses, and

this is all that is needed to resolve the two pulses. The

method of solution is based on knowing that two pulses in

* Cthe frequency domain corresponds to the sum of two cosines

* in the time domain. Since we are using digital signal

* processing methods where we are sampling the time function,

we can represent the two cosines in terms of their

Z-transform. From the Z-transform we can obtain a set of

* linear equations plus a set of inequalities based on the



--" coefficients of the Z-transform. These equations are then

used with mathematical programming techniques to provide an

optimal transfer function to describe the two pulses that

S ." originally smeared into one when the time-bandwidth prod-

uct is less than 0.5.

1.2 Modified Hilbert Transform

Let us consider the evaluation of the Hilbert transform.

- It involves the convolution of a signal with a kernel

given by

K=1/t. (1.2-1)-

If numerical methods are used to evaluate the convolution,

then difficulties arise because the kernel has a singu-

larity which makes certain values go to infinity during

its evaluation. To overcome this difficulty, the fast

Fourier transform algorithm has been used to evaluate the

convolution. In certain applications this leads to anoth-

er problem. One may find that the frequency spread of the

function times the kernel exceeds the frequency domain

defined by the inverse of the sampling distance, and con-

sequently the Fourier transform is distorted. In this

way, the computer evaluation of the convolution integral

yields large errors.

-. 5-..-'.
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3 A new form of the Hilbert transform is given whose kernel

• does not have the problems that exist for the other form
" - "of the Hilbert transform. This new Hiltert transform will

5,' be applied to the phas6.:retrieval problem to show that simi-

S-' lar results can be obtained.
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Chapter 2

ESTIMATION OF CLOSELY SPACED FREQUENCIES

BURIED IN NOISE USILNG LINEAR PROGRA10AING

'P 2.0 Introduction

In signal estimation one finds that there exists a

time-frequency duality in that the signal may be estimated

either in the time or frequency domain. If a portion of

the signal is known for a specific length of time, the

method where the signal is estimated outside the time inter-

val is refered to as signal extrapolation. If on the other

hand the signal is observed over the same length of time

and from these observations the power spectral density of

* .. the signal or simply the spectrum is to be determined, the

process is called spectral estimation. If the signal is

known over an infinite interval, the Fourier transform of

its autocorrelation yields the power spectral density. In

either case, if the signal is estimated in one domain the

estimate of the signal in the other domain can be obtained

by using the Fourier or Z transforms.

There are numerous methods that have been developed for

• signal extrapolation and spectral estimation. In extra-

6
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polating a signal outside its observation interval, it is a

well known fact that if the signal is continuous, de-

terministic and bandlimited it is possiblE perform the
." extrapolation without error. This is beca-. I such a signal

is analytic and the Taylor series expansion can be used

\. since in priciple, all the derivatives within the observed

interval of the signal can be evaluated. This is called

analytic continuation. However, in practice the above

procedure is not feasible because if the observed data

contains noise, the evaluation of the derivatives would be

inaccurate since the derivative is a noise-sensitive proc-

* ess. Slepian et al. [i] proposed an algorithm based on a

. series expansion in terms of basis functions called

prolate spheroidal wave functions. These functions are

orthogonal over the observation interval as well as over

I the infinite interval. The series coefficients can be

evaluated from the observations given but the series is

valid for all time. This method is limited by noise and

truncation errors. In general the numerical generation of

• these functions is very difficult. A method proposed by

Papoulis [2) reduces the mean-square error between the

estimate and the original (time-unlimited) signal at suc-

cessive iterations. Using this error energy reduction

procedure and the properties of the prolate spheroidal wave

functions, Papoulis has shown that this algorithm converges

to the original time unlimited signal. The error energy

V 4
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reduction procedure which Papoulis uses was first used by

g .Gerchberg (3] in order to extend a known segment of an

*analytic spectrum. Gerchberg viewed the limited spectrum

as the sum of the true spectrum and an error spectrum. In

the algorithm proposed it was not the idea to construct the

spectrum perfectly out to some new limit but to reduce the

, energy (squared function integrated) of the error spec-

trum. The error spectrum is equal to and opposite to the

true spectrum in the area outside where the true spectrum

is known. The procedure was shown to be very effective

against noisy data.

For discrete-time signals, the analycity property vanishes

due to sampling. Therefore, the extrapolated estimate need

not coincide with the original signal. Other constraints

besides the band-limited assumption must be imposed on the

estimate to achieve a unique solution. Much of the work on

extrapolation of discrete-time signals is recent. Sabri

and Steenaart [4] suggested a discrete version of the

iterative algorithm proposed by Papoulis [2]. The al-

.. gorithm derived a solution by finding an extrapolation

matrix. Cadzow [5] has proposed a different extrapolation

d matrix which does not have the existance problems of the

. .extrapolation matrix suggested in [4] and has some dimen-

sionality advantages. Much of the theory of extrapolation

£ has been developed for continuous-time signals, and a solu-

5%
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tion for the discrete case has been obtained by sampling

the continuous-time solution. 0

Estimation of the spectrum of discretely sampled deter-

ministic signals has usually been based on procedures using

the fast Fourier transform. These methods are compu-

tationally efficient and produce reasonable results for a

large class of applications. Even with these advantages

the fast Fourier transform approach has two limitations.

The first and most prominant limitation is the frequency

resolution, i.e., the ability to distinguish the spectral

responses of two or more signals. The frequency resolution 6

is approximately given by the reciprocal of the time inter-

jval over which the sampled data is available. The second

limitation is the windowing of the data when processing

with the fast Fourier transform. This windowing occurs

because in order to use the fast Fourier transform the

signal is truncated at some. time and assumed to be periodic
beyond this point [6]. If the window used is a constant

amplitude window, then its Fourier transform is the sam-

pling function. When in the spectrum there is an impulse,

the convolution of this impulse with the sampling function

produces a spectrum where the energy of the impulse is no

longer localized at one frequency but leaks into the side-

lobes of the sampling function. This leakage can have an

effect on other spectral responses that are present. These

.71



effects can cause weak signal responses to be masked by

higher sidelobes from the stronger spectral responses. By

selecting tapered data windows such as Hanning, Hamming or

Bartlet windows [7] , the sidelobe leakage can be reduced

"ro but at the expense of reduced resolution.

.2 .These two limitation of the fast Fourier transform are

troublesome when short data records are analyzed. Short

, 14 data records are a common occurance because many measured
Z.

processes are brief in duration. Some applications where

short data records are encountered are neurophysics [8,9],

,. geophysics [io], speech communication [11,12], radar [13],

sonar [14], and direction finding [15]. Due to the inher-

fi ent limitations of the fast Fourier transform, many alterna-

tive spectral estimation procedures have been proposed.
*.* ,%"

In a classical paper by Blackman and Tukey [16], a prac-

tical implementation of Wiener's [17] autocorrelation

• -".approach to power spectrum estimation when using sampled

data sequences was used. The method first estimates the

autocorrelation lags from the measured data, windows the

autocorrelation estimates in an appropriate manner, and

L then Fourier transforms the windowed lag estimates to ob-

tain the power spectral estimate. This method was very

popular until the introduction of the fast Fourier trans-

form algorithm by Cooley and Tuckey [18]. This renewed

ZS.
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interest in the periodogram which is obtained as the

squared magnitude of the output values from a fast Fourier

transform performed directly on the data set. The maximum

! entropy spectral estimation method proposed by Burg [19] is

based upon an extrapolation of a segment of a known

. autocorrelation function for lags which are not known. In

41
this way the characteristic smearing of the estimated spec-

trum due to the truncation of the autocorrelation function

can be removed. Burg argued that the extrapolation should

. be made so that the time series characterized by the extra-

" h polated autocorrelation function has maximum entropy. In

linear prediction [20], the signal is modeled as a linear

combination of past outputs and inputs. When only the

present input is used, the coefficients of the model are

solved for by minimizing the total squared error with re-

: :-. spect to each of the coefficients. A very efficient al-

gorihtm has been developed by Levinson [21] and Durbin [22]

for solving the equation for the coefficients. A more

extensive overview is given in papers by Jain et al. [23]

on extrapolation algorithms for discrete signals and Kay

et al. [243 on spectrum estimation.

A major concern of spectral and time series estimation is

that of system modeling. Often if there is more knowledge

about the process from which the data is taken, one is

able to make a more reasonable assumption other than the

".'.
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assumption that the data is zero outside the observed inter-

val. A priori information or assumptions may permit selec-

tion of an exact model for the process, or at least a model

that is a good approximation to the actual process. It is

usually possible to obtain a better spectral estimate

'. Lbased on the model by determining the parameters of the

-. ymodel from the obsevations. By using modeling, spectral

estimation becomes a three step process. The first step is

to select a time series model. The second step is to

estimate the parameters of the assumed model using the data

hsamples or auto correlation lags. The third step is to use

the estimated parameters and substitute them into the

theoretical spectrum implied by the model. The motivation

for the modeling approach to spectral estimation is the

higher frequency resolution achieved over the traditional

techniques such as the periodogram [24]. It is easy to see

that if one is successful in developing a parametric model

'" for the behavior of some signal, then the model can be used

for different applications.

In time series analysis, the continuous-time signal s(t)

is sampled to obtain a discrete-time signal s(nT), also

termed a time series, where n is an integer variable and T

is the sampling interval. The sampling frequency is given

as f=1/T. The expression s(nT) can be abbreviated as s(n)

* by normalizing the discrete time scale by T.

'4
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~ The most powerful model in use today is the ARMA model

K ~..where a signal s(n) is considered to be the output of some
*system with an unknown iAnput u(n) such that ti.. foLling U

relationship holds

s(j=-Z-a(iL)s(n-i)+Glb(l)u(n-1) b(0)=l2.-1

where a(i),1!fktp,b(l), 1fllfq, and the gain G are the param-

eters of the hypothesized system. In equation (2.0-1) the

output s(n) is a linear function of past outputs and pre-

$sent and past inputs. The signal is predictable from line-

ar combinations of past outputs and inputs, and therefore

it has been termed linear prediction.

Equation (2.0-1) can also be expressed in the frequency

domain by taking the Z transform of both sides of the equa-

tion. If H1(z) is the transfer function of the system,

then we have that

H(z) =S(z)/U(z)

I +~ b (1) z-' (2.0-2)

1+ a(i)z-'

* ~ where
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-S(z) s (n)z- (2.0-3)

is the Z transform of s(n), and U(z) is the Z transform of

u(n). H(z) in (2.0-2) is the general pole-zero model. The

roots of the numerator are the zeros and the roots of the

denominator are the poles of the model.

There are two special cases of the model which are also of

interest:

1) all-zero model: a(i)=0, l-iep

2) all-pole model: b(l)=0, 1-l-q.

In statistical literature the all-zero model is known as

the moving average (MA) model, and the all-pole model is

.' known as the autoregressive (AR) model. The pole-zero

model is then known as the autoregressive moving average

(ARMA) model. In this chapter only the pole-zero model and

the all-pole model will be considered.

In many applications one finds that the spectrum of the

signal is composed of two closely spaced impulses. This

situation can appear in radar where one of the impulses is

due to a jamming signal and the other is produced by a

desired signal. If the energy of the desired signal is

small compared to the energy of the jamming signal, when

the time over which the total signal is observed is small

the resultant spectrum has the two impulses smeared togeth-

4V
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er. From this smeared spectrum it is desirable to locate

the signal with the smaller energy. Kaveh [25] and Cadzow

[26] have proposed methods for estimating the parameters of

an ARMA model from the observed data samples. In both

methods it is found that the order of the ARMA models has

to be higher than for the theoretical case when high resolu-

tion of noisy signals is desired. The phenomenon of the

smearing of the pulses into one broader pulse is due to

the multiplication of the actual time signal with a rectan-

gular window to produce the short time observations. In

the frequency domain the transform of the short time signal

is a convolution of the desired transform with the trans-

form of the rectangular window. If the signal is concen-

trated in a narrow bandwidth, this convolution operation

will spread the energy of the process into adjacent fre-

quency regions. The convolution of the window transform

with that of the actual signal transform means that the

most narrow spectral response of the resultant transform

is limited to that of the main-lobe width of the window I
transform, independent of the data. For the rectangular

window, the main-lobe width is approximately the inverse of

the observation time. When additive noise is also pre-

sent, the spectral response whose energy level is smaller

than the noise energy level can be hidden by the noise

making it difficult to determine that particular spectral

response. Gerchberg and mammone and Eichmann [27,28]

r7_"

-4A



.16

have devised methods for estimating the spectrum when there

i I is a lack of spectral resolution due to windowing.

In this chapter a new method for estimating the coef-

ficients of an ARM process is introduced. The ARVI.I proc-

ess considered is one whose spectrum contains two impulses

closely spaced together in frequency and the power of one

impulse is larger than the other impulse. This is the case

that would be found in radar. The data is observed for a

very short time, which along with additive noise makes it

difficult to distinguish the two impulses from one another.

The method of solution assumes two things. First, it is

assumed that the approximate region in the frequency do-

main where the two impulses occur is known. The second

assumption is that the signal is known to be the sum of two

* sinusoids whose spectrum is given by two impulses. This

assumption can be made by looking at the resultant spectrum

of the time windowed signal. From the first assumption it

is known where approximately the pulses are to be. In that

region the spectrum is very broad which could be only

possible if the sampling function is convolved with two

impulses and not with one impulse. The method of solution

uses linear programming to solve for the coefficients of

the ARIA model. Linear programming has been used for spec-

trum estimation by Mammone and Eichmann [27,28] as well as

Levy et al. [29]. In this method , linear programming is
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V used to minimize the 1, norm of the absolute values of the

error. The error is the difference between the actual

spectrum and the one obtained from the ARMA model used in

0. the region where the response is known to be. This error

is sometimes termed the residual error. The new method

which estimates the spectrum and from which the time signal

estimate can be obtained is demonstrated by computer sinu-

lations.

2.1 Parameter Estimation
V.

2" The method by which the parameters of the pole-zero model

will be estimated is a two step process, first, to estimate

the denominator coefficients and second, to estimate the

coefficients of the numerator independently. What this

method is doing is to estimate the coefficients of the

transfer function H(z). The Z transform of the signal S(z)

can be thought of as the output of the filter H(z), with

an input function U(z). If the input u(n) is taken as a

unit impulse, then one has that the transfer function H(z),

. and the signal S(z) are identical, or

H(z)=S(z). (2.1-1)

Therefore, by estimating the parameters of H(z) one is also

estimating the parameters of S(z).

I
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IThe first step in the estimation of the parameters will be

to estimate the coefficients of the denominator, a(i).

Equation (2.0-1) can be rewritten in the form"

Pm
t*" s(n)=- a(i)s(n-i)+B(n) (2.1-2)

where
a.

B(n)=G b(1)u(n-1), b(0)=l. -

If in (2.1-2) one takes the summation to be an approxima-

tion of the signal s(n), one has that the approximation

s'(n) is

s'(n)=- a(i)s(n-i). (2.1-3)

Then the error between the actual value s(n) and the esti-

mated value s'(n) is given by

B(n)=s(n)-s"(n)=s(n)+ a(i)s(n-i). (2.1-4)

The value B(n) is then taken to be a form of the residual.

This method estimates the parameters from data in the fre-

quency domain, so that (2.1-2) is converted into the fre-

quency domain by taking the discrete Fourier transform



(DFT) of both sides of the equation. Since the fast

Fourier transform (FFT) will be used in all the simula-

tions, the DFT is used instead of thr 7 transfo-- Ti

is possible because a periodic sequence .as a DFT which can

be interpreted as samples on the unit circle, equally

rspaced in angle, of the Z transform of one period. If a

' <.signal is periodic with period N, it is possible 'to repre-

sent this signal in terms of a Fourier series consisting of

a sum of sines and cosines or equivalently complex expo-

lnential sequences with frequencies that are integer multi-

ples of the fundamental frequency 27r/N associated with the

periodic sequence [6]. The DFT analysis and synthesis pair
are expressed as

I'N-I
X(k)= ! x(n)exp(-j2wfkn/N)

n=O

x(n)=1I Pt X(k)exp(j2rkn/N)

N

where both x(n) and X(k) are periodic. This gives usTI
Ifs(n)exp(-j2wmk/N)=
necu

- exp(-j2vik/N)a(i) Xs(n)exp(-j2rnk/N)

+B(exp(j2wnk/N) (2.1-5)

Equation (2.1-5) represents the relationship between the

... .5. . . . . .. - . - . . _ . - . . - . .' . . . . ' . x - - . , ' . . -S-, - . ,. - -
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DFT of the signal s(n), the DFT of the convolution sum

(where p<N, so that the rest of the a(i)'s are set to

zero), and the DFT of the residual. This equation can be

written in a simpler form as ..

S~)= a~~xp-27i/N]S(k)+B(k) (2. 1-6)

where k ranges between the values of 0 and N-i. The var-

iables S(k) and B(k) are complex numbers so that they may

be written in the form .

S(k)=S'(k)+jS''(k)

B(k)=B(k)+jB''(k). (2.1-7)

By making use of Euler's formula for the exponent, (2.1-6)

is written as

S' (k)+;S' '(k)=

- X a(i)(cos(2ifik/N)-jsin(2ik/N))(S'(k)+jS''(k))

+(B' (k)+jB '(k))

-- a(i)(S'(k)cos(2rik/N)+S''(k)sin(2rik/N))+B'(k)

j( a(i)(S'' (k)cos(2wik/N)-S'(k)sin(2rik/N))-B'' (k)))

(2.1-8)

From (2.1-8) there are two sets of equations, one for the

* real part and the other for the imaginary part given by

..4
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s,(k)=- a (i)(s, ~o(ri/)S, i(ri/)+' (k)

S'(k) - a ( S (k) co s(2rik/ )S (k) sin (27rk/4) ) +B (k) ..
(2.1-9)

(2. 1-1o) "

Because linear programming will be used to solve for the

coefficients a(i), we can also specify the range of the

a(i)'s to help in the solution. The range of the coef-

ficients a(i) can be specified because it is known that

the signal s(n) is made up of the sum of two cosines of

different but closely spaced frequencies. The denominator

of the Z transform of a cosine wave can be derived as f ol-

lows. From the definition of the Z transform and the ex-

ponential representation of the cosine one has

~~~CO .. ,

cos(wkT) 20.5exp(jwkT)z-"+ 2:0.5exp(jwkT)z-  (2.1-11)
k O nk-0

In each of the summations the exponential can be multi-

plied by z and can be written as

exp(jwkT)z-  = (z- exp(jwkT)),

exp(-jwkT)zk = (z' exp(-jwkT))k (2.1.12)

By substituting each term into the appropriate summation .

and using the infinite summation identity that

.'a_:

• a.l

.. -.



a1 (2. 1-13)
A-0

1-a"

.

Equation (2.1-11) is written as

cos(wkT) 0.5 1 + I

I-z-' exp(jwT) 1-z-1 exD(-jwT)J.

=0.5 1-z-' exp(-jwT)+1-z- exp(jwt) N(z) (2.1-14)

1- ex Oiw'))( l-z-1 exp(-jwT) ) D(z) :

By multiplying the denominator one obtains

D(z)= 1-(exp(jwT)+exp(-jwT))z-' +z-2 (2.1-15)

Equation (2.1-15) can also be reduced to the form

D( z)=-2coswTz"+z-2  (2.1-11)

where wT is the normalized radian frequency of the cosine

wave, and T is the sampling interval. Knowing that s(n)

has two cosine waves, the Z transform S(z) has to have the

product of the denominator of each of the cosine waves to

give

D'(z)=1-2(coswT+cosw2 T)z-1+2(1+2cosw,Tcosw 3T)z
- -

7'I



-2 (cosWg~C, TcoSW2T)zz (2.-17)

where w and w are the two radian frequencies of the co-

sines. Equation (2.1-17) can be written as

D' (z)=Il+a( 1)z-+a(2)z'2+a(3)z-+a(4)z-. (2.1-18)

where a(:)=-2(cosw T+coswzT)

a(2)-2( 2cosw, Tcosw2 T)

a(3)=-2(cosw, T+cosw2 T)

a(4t)=i.

Each of the coefficients in (2.1-18) contains cosines. The

limit of a cosine is -1 and +1. These upper and lower

limits of the cosine can be used in the expressions for the

coefficients to give the limits on these coefficients.

.* This gives the limits as

- -a( 1 )r4

-2--a (2) -6

a(3)=a(1)

a(4 )=I. (2.1-19)

A systemi is said to be stable if all the poles of its trans-

fer function are contained inside the unit circle of the

z-plane. in the special case of sinusoids one finds the

poles to be located on the unit circle so that the system
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can be termed marginally stable. By marginally stable it

is meant that the response is oscillating but the poles are

not outside the unit circle. Since the sinusoid is an

oscillating function, its poles have to be located on the

unit circle. Therefore, if a sinusoldal response is termed

stable, it is only because it has no poles that are lo-

cated outside the unit circle. If the solution gives values

aczording to (2.1-19) then one is assured a stable filter

because one obtains these limits through the Z transform

of the cosine wave which can be called a stable function.

Eouation (2.1-6) can be written as

(1+ Ea(i)exp(-j27irk/N))S(k)=B(k) (2.1-20)

By evaluating the z in (2.1-18) on the unit circle one has

D'(exp(j2rik/li))=1+ Xa(i)exp(-j2rik/N) (2.1-21)

which is seen to be identical to the term in the brackets

of (2.1-20) with p=4. Therefore, we know that there are

only four unknown coefficients in the denominator of the

filter H(z). Based on the assumption that the signal con-

tains two sinusoids, it is possible to determine the exact ..6

number of coefficients for the denominator of the filter

H(z). This is possible because the method of solution

2.*. - ***. *-*.****... - -
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will be able to give results which are close to the actual

values even when noise is added. In methods where noise

plays a large role in the estimation of coefficients, the

order of the models which determine the number of coef-

ficients used has to be larger than the theoretical number.

In many such cases the choice of the model order is based

on trying different orders until the best results are

obtained [27].

If one was only interested in obtaining the frequencies of

the si-nai, by factoring the denominator polynomial one

could obtain the radian frequencies of the signal from the

argument of the complex roots. Since it is also of

interest to obtain the time signal, it becomes necessary

to go on to the second step of the estimation process where

one has to first do some rearranging of (2.0-2) in order to

estimate the coefficients of the numerator in a manner

similar to the one just described. It is not possible to
use B(k) that comes from the solution of the first part for

the coefficients of the denominator, because if the signal

has noise added onto it, by minimizing this residual, the

_ noise becomes part of this residual term. Therefore, the

first thing one has to do, is to take (2.0-2) and invert

it, to give

A,



G 1+Z a (i) z-' (2. 1-22)

H1(z) 1+Z lz-

C. where for simplicity we will replace the H(z) term by S(z)

arnd the quotion G/S(z) by S*(z). This is done because the

same method is used to estimate the coefficients b(').

The gain G cannot be found using this method so that the

signal estimate will always be normalized to one. From

(2.1-22) we obtain an expression similar to (2.1-2) with a

residual A(n) givern by

q
s*(n)=- b(7L)s*(n-l)+A(n) (2.1-2?)

where s*(n) is the inverse Z transform of S*(z). Going

through the same analysis as before we obtai'n the fol-

lowing two equations similar to (2.1-c) and (2.1-10),

q

(2.1-241,

+S* (k) sin (2 r lk/4) )+A''(k)

(2. 1-25)

where S*'(k),A'(k) are the real parts and S*''(k),A''(k)

are the imaginary parts of S*(k) and A(k).

I ; . .....
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In order to obtain the range of values of the b(11)'s, theI

E numerator r11z) of the Z transform of the sum of1 two cosines
is given by

,N(z-)=(A, +A,)-(A, (cosw, T+2coswj2 T)+A(cosv.2 T+2cosw1T)z

+ (A1 +A2 ) (1+2cosw, Tco sv2 T)Z-

-(Alcosv,.*, T+A 2 cosv:2 T~z (2.1-26)

where A, and A2  are the amr,;litudes of the cosines and w,1 T

and w2T are as before. Again we have that the values of

the cosines in (2.1-26) are between -1 and 1 oo that we can

obtain the range cf the b(l)'s. When substittn i h

liriting values of the cosines int Co (2.1-26) it is noticed

that each coefficientL has the sun, of (A,+A 2). This suni is

the gain factor G which cannot be found using this method

* so that it is factored out of the numerator. E-juation

(2.1-26) can then be renresented as

N'(z)=1+b' 1)'b(2)f-2+b'(3z (2.1-27) I
whe re

The modified coefficients ofL the numerator b'(l) have the

following rangesp

E-11
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k2.1-28)

Again we are assured a stable filter if the coefficients

are within these ranges. it can be shown as before that

L (2.1-24) and (2.1-25) can be used to find the numerator

coefficients of H(z) with q=3.

Once the coefficients of both the numerator and de-

nominator have been calculated, one can obtain the spectrum

from H(z) or the normalized estimate of the time series by

taking the inverse Z transform of H(z). The inverse Z

transform is chosen for determining the estimated time

signal because it is possible to obtain a closed form solb-

tion of the estimate. From this closed form the ratio of

the amplitudes and the phases can be obtained to compare

with the exact solution. So far there has been no mention

of exactly how the coefficients are to be solved for. in

the next section a discussion of how the problem is formu-

lated to linear programming which is the method of solution

. used to obtain the unknown values of the coefficients is

discussed.

I-



.- *- . .. Z7% ,47-%-,7..W. - .. . . . .

29

* 2.2 1, Norm Formulation and Linear Programming

A linear optimization problem can be stated in the form

minimize (c(i)-Dx)

subject to Pxt'q

Gx=h (2.2-1)

where the term in the summation is called the objective,

and the two sets of linear equations are the conditions of

the problem. An optimum solutior. is obtained when the

conditions of the problem and the given objective are

satisfied simultaneously. A minimum feasible solution

satisfies (2.2-1) and the condition that all the x's of the

solution are nonnegative. The minimum feasible solution is

obtained using linear programming methods which were first

introduced by Dantzig [30].

In many applications of the linear optimization problem,

the solution vector must have both positive and negative

values. To overcome this problem the solution vector is

replaced by the difference of two positive valued vectors

given by x-y. Looking at (2.2-i) a special form of the

optimization is obtained if the variables c(i) and D of the

objective are replaced by the variables h and G re-

spectively. It is seen that by doing this substitution
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' the objective is the summation of the difference between a

value obtained by multiplying the solution vector x with

the matrix G, and the known quantity h. This summation

which can be termed the residual is zero only when the

conditions are satisfied exactly. in the cases where they

are not, the residual will be a positive or negative

number. Therefore, one can write the objective as

minimize ( (h-Gx+Gy) (2.2-2)

or

minimize (u-v) (2.2-3)a
where u and v are positive valued vectors to be consistent

... with the linear programming formulation. From (2.2-2)

and (2.2-3) one has

* Gx-Gy+u-v=h (2.2-4)

where x- 0

, y- 0

&4 u7-1 0

. v O .

Using (2.2-3) and (2.2-4), equation (2.2-1) is rewritten as

".%

z!".~~C C*
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minimize u-v

sub ect to Px-Py -rq

Gx-Gy+u-v=h (2.2-5)

In this form the linear ortirization probl ^  is minimizing

the 1, norm of the r-,idual (u--.

The variable. *.! v of the linear optimization prob-

Lem can be solved for using the simplex method [31]. in

the simplex method once a feasible solution has been deter-

mined, a mininun feasible solution is obtained in a finite

number of steps. These steps, consist of finding a new

feasible solution whose corresponding value of the objec-

tive function is less than the value of the objective fun-

ction in the preceding case. This process continues until

a minimum solution has been reached. One is never guaran-

teed that a solution exists. If no solution exists it is

either because no solution exists in terms of nonnegative

values of the variables can be found or a nonnegative solu-

tion yields an infinite value to the objective function.

possible to obtain a minimum feasible solution in deter-

mining the coefficients of the ARMA model. The next step

is to show how one goes about relating the problem of

section 2.1 to the linear optimization problem.

I Z*
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In (2.2-5) it is seen that the variable q is part of the

inequality condition. When the equation for -che deter-

mination Of the denorinator coefficients was being de-

rived, it was seen from (2.1-9) that the coefficients have

limiting values. Two of these conditions can be placed

into the inequality condition of (2.2-5). As an example

the inequality

~:-p:

-- a(1) !!54 (2.2-6)-.

can be written as

a(i) 1 )

-a(1) - 4 (2.2-7)

The first inequality of (2.2-7) represents the upper limit

and the second inequality represents the lower limit of

(2.2-6). The last two conditions of (2.1-19) can be placed

into the equality condition of (2.2-5). Equations (2.1-9)

and (2.1-10) can also be placed into the equality condi-I....-

tions of (2.2-5). The a(i)'s of the equations are the
unknowns being solved for, the S'(k) and S''(k) on the left

side of the equals sign make up the vector h, the B'(k)

and I1''(k) are the residuals which are to be minimized, and

the matrix G is made up of the terms involving the sines

and cosines. By making these substitutions into the lin-

i A-

%.-
i *'.*b,
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ear programming fcrmat, one is able to solve for the un-
known coefficients. An identical analysis can be made for

determining the coefficients of the numerator from (2.1-24),

* (2.1-25) and (2.1-28).

2.3 Computer Simulation and Results

The method of solution was simulated using the Simplex

Linear Programming subroutines contained in the Inter-

national Mathematical and Statistical Library (IMSL)

Fortran callable subroutine package. CUNY's IBM computer

system was used. To show how effective this new method is,

we chose a signal whose FT contains two frequency pulses in

the frequency cmain which could be placed closely to-

gether. To satisfy this condition we chose

s(n)= v cos(27r (11O)n/N)+ V1 cos(27r (114)n/N) + w(n)
~(2.3-1)

where CO-!-511, N=512 and w(n) is Gaussian noise with var-

iance C. The signal-to-noise ratio (SIR) of the first

cosine is given by lOlog(i/cr2 ) an! of the second

10'1og(1O/cr2 ). The bandwidth is given by

f = 1

rI
19



34

which will be used in the determination of the

P time-bandwidth product.

Fig. 2.3.1 shows the signal s(n) when there is no noise and

all 512 points are used. We can see that s(n) contains an

envelope of a sinusoid with six periods in the 52 points

shown. Fig. 2.3.2 shows the log of the magnitude of the

Fourier transform of s(n), where we see two pulses located

at the frequenzies of the signal. The rest of the mag-

nitudes are so close to zero that their logs are very

negative and cannot be shown in the figure. In Fig. 2.3.3

we have added noise with a variance 2=i.0 and we see that

it is irmpossible to distinguish how many periods the en-

velope cf the signal contains. The spectrum of this noisy

signal is shown in Fig. 2.3.4 where one of the things that

one notices right away is that the spectrum is now centered

about the 0.0 db level. This corresponds to the spectrum

of the noise being added to the spectrum of the signal.

The reason why the noise did not affect the pulses is be-

cause the noise is not large enough to bury any of the

pulses when all of the points are used in determining the

spectrum. Noise plays a large role in the determination of

the loacation of these pulses when not all the points are

used and the two pulses begin to smear together.

In order to be able to compare the location of the poles

.S



* "- and zeros of s(n), Fig. 2.3.5 shows the first quadrant of

the z-plane. We chose to show only the first quadrant

because all the poles and zeros of our s(n) can be shown

- here with the understanding that for complex poles and

zeros, there are mirror images of these poles and zeros in

the fourth quadrant. Fig. 2.3.5 shows two poles located on

the unit circle which reprasent the locations of the two

pulses in the srectrum. The zero in between the pcles on

• the unit circle is the dip that occurs between the two

pulses in the spectrum of Fig. 2.3.2. The zeros on the

*real axis along with the ccmplex poles and zeros are used

to calculate the amplitudes and phases of the signal s(n).
-..

In order to have a uniform method of measure when truncat-

ing the signal s(n), we define the time bandwidth product

(TBW) as the number of samples used multiplied by the nor-

malized bandwidth of the signal which was defined earlier

* .for our case. This definition can be explained by looking

at the spectrum of a DFT having length N. The DFT is a

two-sided transform so that the spectrum has both positive
and negative frequencies. The maximum frequency of the

spectrum is N/2 which in terms of a normalized frequency

can be divided by N to give 1/2. This frequency is known

as the Nyquist frequency because it gives the separation

between time samples as 1/N. The Nyquist frequency is also

:' the bandwidth of the signal since it is assumed that the

.,I
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spectrum has a periodic extension beyond this frequency.

Therefore, if all N time samples are used, the

time-bandwidth product is given by

-,T = N • =

from which the normalized TBW is given by 1/2. For the

DFT, the separation of time samples is given by i/N. If

the bandwidth of the signal is taken to be less than N/2,

it is seen that the normalized bandwidth will be less even

when all of the N samples are used. A normalized TBW of

less than 0.5 corresponds to choosing the separation be-
tween time samples too far apart so that the signal is

undersampled. It can be seen that a TBW=0.5 is the limiting

value for spectral resolution. If TBW becomes smaller, then

any two peaks spaced closely together will become un-

distinguishable because they smear into one broader peak.

Even when TBW is greater than 0.5, there may be difficulty

in distinguishing the two peaks if the noise power is high

*enough to hide the weaker pulse.

For the first case to test our method, we chose to use only

92 out of the 512 samples. This gives a TBW of 0.719. In

Fig. 2.3.6 we show the truncated time signal s(n) with noise

variance o2=i.0. The spectrum obtained using the FT of

this signal is shown in Fig. 2.3.7. In the spectrum of

Fig. 2.3.7 we see that the two pulses are smearing into one

with a very shallow dip between the two peaks very close

".?
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in height to the weaker pulse. This shallow dip is due to

both the TBW and the noise. The combination of the two

makes for the difficulty in judging that there should be

two peaks. After using our method, in calculating the

coefficients of the numerator and denominator of the para-
metric model, we found the pulses of the spectrum to be at

normalized frequencies f? =0.2148 and f2 =0.2285 as compared

to the actual values fi =0.2149 and f2 =0.2227 which shows

that we are very close to the original values with our

estimates. The pulses at these frequencies are shown in

Fig. 2.3.8 where the dip that is located between the two

pulses is at f=0.2231 as compared to where it should be at

f=0.2167. The location of the dip represents the complex

zero located on the unit circle of the z-plane.

We observe that the first pulse in Fig. 2.3.8 is larger

than the second one, and if we look at Fig. 2.3.2 we see-
the opposite. If we take a look at the location of the

N.-
poles and zeros from the coefficients calculated we see

that they are located as follows 
1

poles: 0.219+jO.975 zeros: 0.166+jo.977

0.134+jO.991 0.203

" .0.0

which are plotted in the z-plane in Fig. 2.3.9. The actual

locations are shown in Fig. 2.3.5 and are given by

poles: 0.219+jO.975 zeros: 0.207+jO.978

o'5
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0.170+jO.985 0.183

00 0.0

By comparing the location of the poles and zeros we see

that there is an error in the location of the estimated

ones. These errors are not that great but they have caused

the first peak to be higher than the second peak. By tak-

*. ing the inverse Z transform of the parametric model using

the coefficients calculated, we obtained the normalized

signal estimate s(n) given by

s(n)=0.612cos(l.349n+0.1479)+0.4 02cos(l.435n-0.1741)

J
~(2-3-2)

which if we compare to (2.3-1) we see that the first

cosine has a larger amplitude and both cosines have a phase

- which is not in (2.3-1). The estimated signal is shown in

Fig. 2.3.10 where the envelope of the signal is a sinusoid

having seven periods in the 512 samples compared to six for

the original signal. Again this is a consequence of the

error of the location of poles and zeros.

For the next case investigated we chose the same TBW prod-

uct as before but increased the noise power toa 2 =5.0. The

individual SNR'S are given by -7 db for the smaller

amplitude cosine and 3 db for the larger amplitude cosine.

Fig. 2.3.11 shows the time truncated version of the signal

_!* "°a -. -
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which when compared to Fig. 2.3.6 shows how much higher the

amplitudes are and it is impossible to see that the signal

is periodic. The FT of the signal is shown in Fig. 2.3.12

N " where it is noticed that the spectrum is higher above the

zero db line than in the previous case because the noise

. ,:. power is large. We see that the two peaks are separated by

a very shallow dip and that there is a peak on the right

side so that it looks like there are three peaks in the

range of frequencies the signal is known to be in. The

soluticn to our method gave coefficients from which the

spectrum of Fig. 2.3.13 is obtained. The normalized fre-

quencies of the peaks are f =0.2148 and f-2 =0.2304. co-

:: .'" mparing these values with the actual ones we see that the

first peak occurs at the exact frequency and the second

peak is only slightly in error. This error is due to the

. ~ TBW and noise. We see that by increasing the noise five

fold we are able to get as good results as when the noiseS
. ~was smaller. The poles and zeros from the coefficients are

poles: 0.219+jO.973 zeros: 0.177+jO.982

I 0.128+jO.994 0.213

o0.0

which when compared to Fig. 2.3.5 are slightly off. From

Sthe location of the poles and zeros we take the inverse Z

transform of the parametric model to obtain the equation of'a ,j*"

the normalized signal s(n)

IT "::

-I
4
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s(n)=0.435cos(1.349n+0.0609)+0.570cos(1.4478n+0.0961)

(2.3-3)

which when comDared to (2.3-1) shows that the ratio of the

amplitudes is incorrect and that the solution introduces

phases which were not there originally. This signal s(n)

is shown in Fig. 2.3.15 where the number of periods of the

envelope of the signal is eight compared to the actual

number of six.

In the next case, Fig. 2.3.16 shows the time truncated

version of the signal for a TBW=0.5 and noise with var-

i iance c-2=I.0. The spectrum in Fig. 2.3.17 shows that the

first peak is not distinguishable because the dip between

the two peaks is at the same level as the first peak. -

With our method, the spectrum obtained is shown in Fig.

2.3.18. It shows two peaks located at fl=0.2148 and

, f2=0.2285 which are at the same locations as in the first

case. By decreasing TBW our method of solution was able to
a-'

get as good results as when the TBW was larger and the two

peaks were more clearly defined. Again we notice that the

first peak is larger which is incorrect because of the

location of the poles and zeros in the z-plane. The lo-

cation of the poles and zeros are

poles: 0.219+jO.976 zeros: 0.173+jO.979

0.135+jO.991 0.056

S. ' A 1, A' &- .. .. ,-
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L 0.0

which have been plotted in Fig 2.3.19. One of the biggest

errors in this case is the location of the zero on the real

axis. This is causing the amplitudes to be incorrect. By

taking the Z transform of the parametric model using these

poles and zeros, the time signal obtained is shown in Fig.

2.3.20. The envelope of the signal has seven periods in

the tire shown. The normalized signal in Fig. 2.3.20 can

be written as

s(n)=O.544cos(l.3499n-O.C423)+O.4o9cos(1.4 358n+O .092 4 )

(2.3-4)

As a final case we chose to have a TBW=O.359 with a noise

variance of a2=1.0. The short duration signal is shown in

Fig. 2.3.21. The spectrum of the signal is shown in Fig.

2.3.22 where we see very broad peaks throughout with one

very broad peak where the two pulses should be. This broad

peak is made up of the two pulses smeared together because

of the very small TBW. Looking at it, one could not tell

that two pulses belong there. Therefore, to see where
•, ,.-[

these two peaks occur we used our method to determine the

coefficients of the parametric model. The resultant spe- -

trum is shown in Fig. 2.3.23. The normalized frequencies

of the pulses are f =0.2148 and 72 =0.2305. The second -,'.'.

estimate is incorrect but is the identical location found

.77'
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when the TBWO0.718 and the noise variance was o= 5.0. By

decreasing the TBW, our method did no worse than for the

second case investigated. The location of the poles and

. zeros of Fig. 2.3.24 are

poles: 0.219+jO.976 zeros: 0.159+jO.978

0.122+jO.992 0.277

-- 0.0

By taking the inverse Z transform of the pole-zero model,

we found the normalized estimate of the signal to be

s(n)=0.608cos(l.3496n+O.1452)+0.404cos(l.44 83n-0.1072)

(2.3-5)

which is plotted in Fig. 2.3.25.

2.4 Conclusion

A -We have shown a method to determine the location of two

frequencies when the time bandwidth product is small and

* when noise is added to the signal whose variance is equal

to or greater than the power of the smallest cosine. The

method makes use of the representation of two impulses in

the z-plane which is used to obtain constraints for the

maximum and minimum values the coefficients of our para-

metric model can take. These constraints along with theI . 4
relationship these coefficients have in the spectrum, we

"S
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used linear programming to solve the set of linear equa-

tions by minimizing the 1, norm. Once the coefficients

have been solved for we are able to obtain the normalized

estimate of the time signal by inverse Z transforming the

parametric model.

Four cases were used to simulate our method in showing how

affective it is. it was found that by decreasing the TEW

we obtained similar results to when a higher TBW was used

with a larger noise power. In the last case examined the

* TBW was so low that the two pulses in the spectrum smeared

together showing a very broad peak. Our method was able to

obtain a good estimate of the frequencies. The time es-

timate of the signal is different because the location of

the poles and zeros is not exact.

ft ' 't

ft
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Fig. 2.4.7 -Log magnitude of spectrum when the
TBW=O.719 and noise has variance a2=1.0.
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Fig. 2.4.19 Locations of estimated poles and
zeros in the first quadrant of the z-plane of
signal s(n) having TBW=O.5 and c.L2=1.O.
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Chapter 3

F_,ITE TI.IE-BANDWIDTH PRODUCT

HILBERT TRANSFORM

3.0 Introduction

When analyzing a process, one finds that under certain

circumstances, the real and imaginary parts of a signal are

related through a specific relationship, or the amplitude

and phase are related by that same relationship. In dif-

ferent disciplines, the relationships are known under

different names. In mathematics literature these relations

"."*" ~are referred to as Poisson's formulas [32] , in optics they

are known as the dispersion relations [33] , and in signal

processing theory the relations are, called Hilbert

transform relations.

The Hilbert transform is used in the phase retrieval prob-

lem which arises when the wave phase is apparently lost or

impractical to measure and only intensity data is avail-

able. This situation occurs, for example, in electron

, microscopy where the index of refraction structure of thin

films or the height distribution of a surface is to be

determined from the intensity distribution in the far

69
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field. The phase problem also occurs in coherence theory

[34], signal processing [35,36,37], antenna array design

[38], Fourier transform spectroscopy [39], and design of

radar signals [40].

If we are given a real signal f(t) that is square inte-

grable, and bandlimited to a frequency £, then the signal

f(t) can be represented as

f(t)=Re r(t)expjglt,

where

.(t)=2f+(t)exp- jglt

and

f+(t)=i F(w)exp jwt dw

2j0r
7." By definition, the Fourier transform of f(t) is truncated

at w=-SI. That is, F(w) is identically zero for w<-.

Multiplying f(t) by exp j 91 t shifts the spectrum to the

right by an amount 91. The resulting complex signal has no

negative frequency components.

IZ
A- . . . - .. ° . .* * .. .. ... ' v... . ........ ... ... .. ¢ . ... .. ... * i
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The preenvelope of a real signal f(t), is the complex-valued

function

m(t)=f(t)+jr'(t) (3.0-1)

The real signal is the real part of the preenvelope m(t).

., The preenvelope is also called the analytic signal. An

analytic signal has the property that the envelope of f(t)

is the absolute value jm(t)j of its preenvelope which is of

use in modulation theory [35].

In (3.0-1) we have that the real and imaginary parts of

the signal m(t) are related by the Hilbert transform

given by

"(t)=l P ;of(T) dr = H[f(t)] (3.0-2)

Ir o t-T

where P denotes the Cauchy principle value given by

f(t)=_ lm f f(T) dT + dT dT

V t-'t- t- (3.0-3)

9/. '.

The frequency spectrum of f(t) is given by its Fourier .

transform[..

K:5*..'.
v :,?.
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F(w)= F[f(t)= J'f (t)exp(-2rft)dt (3.0-4)

and F(w) exhibits real-even, imaginary-odd symmetry be-

cause f(t) is real. The spectra of f(t) and T(t) are re-

(" lated through the relationship

F [f(t)]= -jsgn(w)F(w) (3.0-5)

where

+1 ,wZO

sgn(w)= , w=O (3.0-6)

From this the Hilbert transformation of f(t) can be viewed

as f(t) passed through a -900 phase-shift network whose

frequency and impulse responses are

G(w)= -jsgn(w) (3.06-7a)

g(t)= i/rt (3.0-7b)

Because G(w)= -1, we must have

.- :'

f(t)= -H[?f(t)] (3.0-8) 'p

and f(t), T(t) are termed a Hilbert pair.



3 The spectrum of m(t) is shown to have zero negative fre-

quency components by substituting (3.0-5) into the Fourier

transform of (3.0-i). This gives us

. q(w)=F(w)+jF[f(t)j (3.0-90)

or

N(w)= F(w)+j(-jsgn(w)F(w))

=F(w)[1+sgn(w)] (3.0-10)

For w less than 0, from (3.0-6) we see that the sign fui-

ction is -1 and the function M(w) disappears. For w

greater than 0, M(w)=2F(w), and for w=O 1.(w)=F(0). This

can be rewritten as

*2F(w) , w>0

M(W)= F(O) , w=0 (3.0-11)
0 w<O

When the spectrum of M(w) is bandlimited to +S,M(w) van-

ishes for w>SI, and the finite energy E. of the signal is,

by Parseval's theorem

CO n
dm(t 1 IM(wJ2 dw (3.0-12)

- O

2 7r
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Let z= T +j0 define a complete variable. By inverse

Fourier transformation

M(z f M(w)expjwt dw (3.0-13a)

2 V

1 = I M(w)exp-wo expjvT dw. (3.0-13b)

27r

It becomes evident that given the integrability and con-

vergence properties for the existence of the Fourier trans-

form that (3.0-13) must converge for any a-aO. Therefore, '"

m(z) must be free of zeros in the upper half of the

z-plane.

If we let m(z) be bandlimited to 91, from (3.0-13) we have,

1 M(w) exp-w0 " dw . (3.0-14)

2~ 7r
I..€ 

,',.

From the Schwartz inequality (3.0-14) becomes

-m(z)1 1 M(w) dw 1 fexp-2wor dw

27r 27

E-v 1-exp(-2 ) (3.0-15)",

4'7 -

L %
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where Em is the finite energy given by (3.0-12).

This shows that m(z) is bounded everywhere in the finite

lower half and whole upper half of the z-plane. When M(z)

is bandlimited, then m(z) must be an entire function. This

relationship does not depend on bandwidth limitations.

With 91 =co, (3.0-15) is finite for any o*>0 provided that

m(t) is square integrable. A finite bandwidth insures that

the lower half plane singularities are at infinity. The

Hilbert transform can also be used to describe the re-

lationships between the modulus lm(t)l and the phase (t)

of an analytic signal. It is assumed that M(w) is band-

limited. Equation (3.0-2) can be written in phasor nota-

tion as

m(t)= m(t) exp4(t) (3.0-16)

where

Im(t)l =/2(t)+?2(t) (4.0-17a)

SS(t)= arctan f(t)/f(t) (3.0-17b)

By taking the complex logarithm of (3.0-16) we have

ln m(t) l in Im(t)I + j O(t) (3.0-18)



77

in which the logarithmic modulus and the phase are the real

and imaginary parts of a time function. Certain conditions

have to be imposed in order for the Hilbert relation to

hold between the modulus and phase. We first note that

in m(t) is not square integrable, and in general, m(t) - 0

as t -c and thus in m(t) -c as t - co. However, in

certain instances, we can modify m(t) by the addition of a

constant unit amplitude so that the modified function

in(1+m(t)) is square integrable if Im(t)l is chosen to be

less than one [41].

Another way to avoid the problem is to study

ln'm(z)= d in m(z) (3.0-19a)

dz

.=ln' m(z)+j 4),(t) (3.0-19b) .<

=m'(z)/m(z) (3.0-19c)

From the Payley-Wiener theorem [42], if m(z) is entire and

square integrable along the real axis, and if M(w) is band-

limited to a,then

m(z)=O(exp( fOIjzj)) (3.0-20)

"

where 0 means "order of" defined as the maximum absolute

value. This means that the maximum absolute value of m(z)

Or.
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is increasing exponentially with radius r=JzJ. From this

we have that In m(z) at worst will vary linearly with Izj,

and ln'm(t) must therefore vanish or tend to a finite con-

stant in the extremities of the z-plane.

Because m(z) is analytic, ln'm(z) will have upper half plane

singularities only if m(z) has zeros in the upper half

plane. If ln'm(z) is square integrable, we then have the

relationships

1(t) H [ ln' m(t)] (3.0-21a)
' n'm(t)' -H (t)] (3.0-21b)

where m(z) must be zero free in the upper half of the

z-plane. The relationship where the phase and magnitude S

are related through the Hilbert transform is known as the

minimum phase condition where the phase displacement is the

smallest possible for its gain.

From (3.0-21) we can always calculate ( (t) and In m(t) by

integration. The results obtained will generally not be j
unique. In certain applications the fact that the solution

is not unique does not play a role in the solution [35].

'S%

The theory just described has been for analytic time sig-

nals whose spectrum has zero negative frequency



.79

components. A dual of this is a time signal that has no

negative time components. It can be shown that the real

and imaginary parts of the spectrum are related by the

e Hilbert transform. Sig,1nals that have no negative time
components are termed causal. In cybernetics, a causal

signal that is also square integrable is called a wavelet

[37.

The solution of the phase retrieval problem can either be

solved for by relying on the analyticity of the signal

where the Hilbert transform can be used, or a computational

procedure. In the case of what in optics is called a weak

object [4 3 ,44] one has a signal F(w) given by

F(w) = 1+M(w) (3.0-22)

where

I (w)l << I1.

With this condition we can approximate the real part of the

signal M(w) as

Re[M(w)] ~0.5(F(w)-l) (3.0-23)

and the imaginary part of the signal M(w) as

PI.

ES



.80

[?wIM(w)]- [Re M(w)] 30-4

As we can see we have to have the special condition that

the signal M(w) has a constant dc offset and the signal

magnitude is much smaller than the offset.

Another procedure is the apodizing technique. In this

C': technique, the function m(t) is modified so that the zeros -%

of the modified function are displaced so that their con-

tribution to the phase is diminished. The logarithmic

Hilbert transform can then be used to calculate the phase.

The apodization concept follows from considerations of the -

bandlimited Fourier transform [33]:

F(z)= f(t) exp(-yt)cos(xt+arg f(t))dt

~f
+j a f(t) exp(-yt)sin(xt+arg f(t))dt (3.0-25)

where z=x+jy. If f(t) is made to decrease more rapidly,
- . near the lower limit of the integrals then larger x,y must

be required. This means that a larger zero-free area about

the origin is created, by reducing the phase contributions

of the zeros in the lattice by having f(t) decrease more

rapidly near the edges of the window. This c.-.n be accom-

plished by multiplying f(t) by a suitable filter.

Nakajima and Asakura [45] have used the Gaussian, sinc and;1-6N
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triangular filters to perform the apodization which is a

multiplication of the autocorrelation of the signal with

the desired filter function. The autocorrelation is the

inverse Fourier transform of the magnitude in the fre-

quency domain.

As was already mentioned, it becomes difficult to obtain

the phase from magnitude measurements if the function has

zeros in the upper half of the z-plane. Procedures have

been developed to determine where in the upper half plane

the zeros occur so that they could be flipped into the

lower half plane. By accomplishing this flip, the mag-

nitude in the frequency domain remains the same. Nakajima

and Asakura [46] have devised a method to determine the

position of the zeros from the magnitude of the signal and

the magnitude of the Fourier transform of the signal.

From this along with the logarithmic Hilbert transform and

a nonlinear least-squares parameter estimation technique,

they have been able to determine the phase.

Gerchberg and Saxton [47,48] were first to suggest the

use of both the magnitude of the signal and the magnitude

of the spectrum to obtain the phase. Misell [ 49] proposed

the use of the intensity distributions of two slightly

defocused images. In the Gerchberg-Saxton algorithm, at

each step the computed values of the intensity are cor-

;-:1
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rected by combining with the measured values. Other sug-

gestions [50] for use of the magnitudes of the signal and

the spectrum have involved the solution of algebraic equa-

tions which connect the sampled magnitudes in tire and

frequency with coefficients of the discrete Fourier trans-

forms of the function.

Bates et al., [51,52,53] have obtained a simple algebraic

derivation to the phase problem, and have devised an easily

implementable algorithm. The algorithm works for images

a that are weakly localized. What this means is that the

energy of each sample is slightly spread about the sample.

5 An alternative approach to phase retrieval problem is to

employ one of the gradient search methods. It has been

shown, [54], that one such method, the steepest-descent

I method, is closely related to the error reduction algo-

A. rithm. Its one drawback is that it converges slower than

K other gradient search methods that are available.

Much work has recently been done in reconstructing the

signal from its phase [60,61,62,63]. This is because it is

possible to relate the phase of a signal to the signal

under certain conditions, which makes it easier to perform

than to obtain the signal from its magnitude.

0715
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In this chapter we describe a new form of the Hilbert trans-

form which is based on finite time observations of a

signal. It will be shown that the kernel does not have the

' inherent singularity that the regular Hilbert transform

exhibits. 'he will show that the modified Hilbert trans-

form has similar properties of the regular Hilbert trans-

form. The modified Hilbert transform will be used with a

method that we call the method of partitioning to de-

termine the phase of a functicn given its magnitude. Nu-

~ merical results will be used to show how this new method

Sworks.

S""" 3.1 Modified Hilbert Transform

In section 3.0 we have shown the Hilbert relationship be-

tween the real and imaginary part of a signal given that

the Fourier transform of the signal has no components on

the negative side of the axis. For this case the Hilbert

transform can be written in the form given by Papoulis

[55]:

R(w)=-2 X(y) sinyt cos wt dy dt (3.1-1)

X(w)=- R(y) sinwt cos yt dy dt (3.1-2)
". " r fo fo

r, •-.......

*..* . . . .
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where R(w) is the real part and X(w) is the imaginary part

of the complex signal. By looking at (3.1-1) and (3.1-2)

we see that the integrals are evaluated in both the time

and frequency domains, and because of the even symmetry the

integrals are also evaluated for only positive values.

If we were to assume that the signal is observed in the

time domain for a finite time T, then in (3.1-1) and

(3.1-2), the upper limit of integration for t is T. For

simplicity we will obtain the modified Hilbert transform

from (3.1-2) with the understanding that the procedure is

applicable to (3.1-1). With T as the upper limit, (3.1-2)

can be written asCO T
X(w)=-2 R(y) sinwt cosyt dt dy (3.1-3)

We see from (3.1-3) that the integral evaluated over t can

be evaluated to give the equation only in terms of w and y.

The integration gives us the following

pT21 sinwt cosyt dt= 1-cos(w+y)T - 1-cos(w-y)T (3.1-4)
"o (w+y) (w-y)

which can be placed back into (3.1-3). Therefore, we have

from (3.1-3) and (3.1-4)

Ie
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j(;)- R(:) 1-o-~ + 1-cos(w-y)Tldy. (3.1-5)

L(w+y) (w-y) -

If the complex signal is assumed to be bandlimited to w=112

we can rewrite (3.1-5) as

X(w)=-iJ R(y) 1-cos(w+y)T dy

-1 R(y) 1-cos(w-y)T dy(3-6

where we have broken the integral into the sum of two inte-

grals. The two integrals can be combined into one by

changing the variable in the first integral to give the

final result

X(w)=-1 rR(Y) 1-cos(w-y)T dy (3.1-7)

(w-y)

The above equation can also be written with different

limits of integration. It is seen that both the variables

w and y take on the values

F:W

- =Y=~~
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If new variables are defined given by

w, =w/Pa

we can rewrite the inequalities as

-1=w'=l
~-1=y'=l

With these new variables (3.1-7) can be written in the form

X(aw) R(Sly') 1-cos91T(w'-y') dy' (3.1-8)

' "(w'-y')

A reason why one may be interested in this form of the

equation is that the time-bandwidth product is directly

incorporated into the equation. This is the form of the

transform we have termed the modified Hilbert transform.

From (3.1-1) we can go through the same analysis to obtain

R(w)=-i X(y) 1-cos(w-y)T dy (3.1-9)

(w-y)
=- w X(n y') 1-cos 91 T(w'-y') dy' (3.1-9b)

(w'-y')
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Equations (3.1-7) and (3.1-9a) can be rewritten using tri-

ginometric identities as

x(w)=-1 fsR(y) sin'0.5T(w-y) dy (3.1-10a) 4

0.5(w-Y)

R(w)=ifX(y) sinz0.5T(w-y) dy (3.1-lob) 4

O.5(w-Y)

which if we take a closer look at the kernel, contains the

sampling funct ion given by

vsincO.5Tw = sina.5Tw/(O.5Tw) (3.1-11)

This sampling function is a consequence of the finite time

observation of the signal. We see that the modified

Hilbert transform is a convolution of a signal with a ker-

nel evaluated over a finite bandwidth. The difference

between the regular and modified Hilbert. transform is the

kernel given by ,

FrK(w)= 1-cosTw = TsinO.5wTsincO.5wT (3.1-12)

which differs with the kernel of the Hilbert transform

given by

91..
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K'(w)= 1/w. (3.1-13)

In (3.1-13) we see that the kernel has a singularity at w=O

where the function approaches infinity. For the modified

Hilbert transform kernel we see that in the limit as w

approaches to zero, the sampling function approaches one

and the sine approaches zero giving the overall limit as

zero. The kernel of the modified Hilbert transform has

an envelope which is identical to the kernel K'(w) with

sinusoidal variations which makes it go to zero as w goes K
to zero. In Fig. 3.1.1 we see the kernel K(w) for T=1 and

f=12 where we have that w=27rf. We see that for positive

frequencies the kernel has only positive values and for

negative frequencies only negative values as in the case

of K'(w). In Fig. 3.1.2 we have expanded a portion of the

spectrum and evaluated the kernel for frequencies up to f=3

with T=1. From this and the previous figure we note that

the majority of the energy is located in the lower fre-

quencies.

By a change in variables we can get the equivalent forms of

(3.1-10a) as

X(w)=-_1 'sincO.5(w+y)T sinO.5(w+y)T R(y) dy (3.1-14a)

X(w)=-I sincO.5ytsinO.5yT R(w-y) dy (3.1-14b)

~-lo
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which can be extended to (3.1-10b).

To evaluate the integral we replace the integral by a sum-

mation to give us (3.1-10a) in the form

? x(AJ )=-_ 1 (1-cos((Aj -A. )T) R(A, )A (3.1-15)

pj.a
V A

where M is the number of intervals the integral is broken

fN into, and

A= 2QS/M
D ~A =j (j-1)A-a')

ai =(i-1)A- a ij=1,2,...,M (3.1-16)

Using (4.1-16) we can rewrite (3.1-14) as

-.; M+IL X(AI )=-- I (1-cos((j-i)T)) R(Ai) (3.1-17)

'p To rewrite (3.1-10b) the X and R need only be interchanged.

As an example to show how this modified Hilbert transform

evaluates the imaginary part from the real part of the

Fourier transform of a causal signal we have chosen our

Ma_ na
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signal f(t) to be a unit amplitude step for a duration T.

Therefore, we have f(t) given as

f(t)= 1 ,O=t=T

0 ,otherwise (3.1-18)

The Fourier transform of f(t) is given by

F(w)=O.5TsincO.5wTexp(-jO5wT)

=0.5TsincO.5wT(cos0.5wT-jsin0.54T) (3.1-19)

Therefore, if R(w) is the real part c' the signal given by

F
R(w)= 0.5TcosO.5wTsincO.5wT (3.1-20)

then the modified Hilbert transform should yield the im-

aginary part X(w) given by

X(w)= -0.5TsinO.5wTsincO.5wT (3.1.21)

In Fig. 3.1.3, the real part of the signal R(w) is given

by the solid line. It is seen to be an even function. To

obtain the imaginary part X(w), (3.1-17) was used with

M=256, T=1 and f=9/27r=12. The imaginary part is drawn

using a dashed line. To see how closely the result cor-

responds to the actual values, (3.1-21) was also drawn
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using a dotted line. We see that the actual and the cal-

culated imaginary part are overlapping, indicating that the

calculated function is identical to the actual one. As a

convenience for graphing, all of the functions will be

normalizing. The normalized constant is obtained by find-

ing the maximum . olute value of the function and dividing

the function by . is value. This assures us that the mag-

nitude of the function will always be less than or equal to

one. In Fig. 3.1.3, as will always be the case, the nor-

malizing constant KR for the real part of the signal is

given by 0.5. The normalizing constant for the actual

imaginary part KI is given by 0.362, and the normalizing

constant of the calculated or estimated function, KE is

given by 0.360. From the normalizing constants KI and KE

we see again that the results obtained using the modified

Hilbert transform are very close.

In (3.1-16) we have that the spacing between samples is

/= 4 7rf/M (31-22a)

or

. A/27r 2f/M (3,1-22b)

From the sampling theorem for the Hilbert transform [571,

. . . . • , . , . . . .. . . . . . .. , , ... • .. ,.... .. ... - ... , .. ,... ' )%"' p
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we have that

A' 1/T (3.1-23))

from which we can obtain an expression for the

time-bandwidth product TBP associated with the sampling

interval A'. From (3.1-22) we can deduce that the band-

width B is given by

B = MA'/2 =f (3.1-24)

From (3.1-23) and (3.1-24) we have

f M/2T (3.1-25a)

or

fT =M/2 (3.1-25b)

Equation (3.1-25b) states that if one is to sample accor-

ding to (3.1-23) then the time-bandwidth product is equal

to M/2. In the case where the time-bandwidth product is

less than M/2, the signal is being oversampled, and if the

product is greater than M/2, the signal is undersampled.

In speech analysis [58,59] , for certain processing It

techniques, one finds it necessary to oversample the signal.

•']
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In the example of Fig. 3.1.3, the TBP=12 which tells us

that we are oversampling by 10.67 times. To test the modi-

flied Hilbert transform in how well it works for calcu-

lating the real part of the signal from the imaginary part

with identical constants as before, we use the negative of

(3.1-21) to see how closely our results match (3.1-20).

Fig. 3.1.4 shows the results where we see that the graph of

the actual real part of the signal given by the dotted line

and the graph of the calculated real part are overlapping.

The imaginary part of the signal is given by the solid

line, where for quick identification we note that the imag-

inary part is odd. The normalizing constants for Fig.

3.1.4 are KI=0.326, KR=0.5 and KE the normalizing constant

of the estimate to the real part of the signal is 0.494.

With the shape of the estimate being identical to the shape

of the actual signal, and having the normalizing constants

in close agreement, we can say that the estimate is exact.

In the above examples the bandwidth of the signal was taken

to be 12. This bandwidth gave us the limits of inte-

gration, and we observed that the calculated estimates of

the real and imaginary parts of the signal were almost

identical to the actual values. To see what effect re-

ducing the bandwidth would have on our solution, we next

chose to have the bandwidth f=3. Again we have 14=256 and

T=1. The TBP here is given by 3 so that we are oversampling

#'. . .

+- '.:-
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by 42.67 times. Equation (3.1-20) was used as the input

and we wanted to see how closely our results using the

modified Hilbert transform would be to (3.2-21). In Fig.

3.1.5 the solid line is the function given in (3.1-20)

with KR=0.5. The dotted line is the actual solution which

is given by (3.1-21), and its normalizing constant is

KI=0.362. The solution obtained by the modified Hilbert

transform is shown by the dashed line with the normalizing

constant given by 0.356. We notice that at the edges of

our window, the estimate does not correspond to the actual

values. This phenomenon is caused by the windowing. The

real part of the signal does not have all of the energy or

most of the energy concentrated in the region up to f=3.

The same can be said for the kernel of the transform which

we have shown in Fig. 3.1.2. By taking the convolution of A--

this signal with the kernel over such a small region, the

effect is to produce smearing at the limits of inte-

gration. The esimate about the origin is seen to be very

V close to the actual values because in this region the con-

volution involves the main lobes of the functions which

ri have enough energy to produce good estimates. In this

situation, we notice that the sampling interval or con-

sequently the TBP did not have an effect on our results.

It was our choice of bandwidth that caused the smearing at

the edges.

N .'
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V; The next example that we wanted to choose was a causal

signal that- would have all of its energy in the short time

that it would be observed. For this we chose

f(t) = 12exp(-6t)u.(t) (3.1-26)

where

UT(t) 1 , Ot 'A T

0 ,elsewhere

The Fourier transform of (3.1-26) is calculated to be

i F(w) 12(1 - exp-(6+jw)T) (3.1-27)

6+jw

By choosing T=1, the magnitude of the exponential is

2.48x10 3- so that (3.1-27) can be approximated by

F(w) = 12 j
6+ jw

= 72 -j 12w (3.1-28)

36+w t  36+wz

With this choice of T, we find that 99.9% of the energy is

in the signal. This satisfies the condition that we wanted

*' @ ''' '' . ''i''"..'" '¢ 2lJ'' 2 2 .¢ - '- ' ". '. . ' ....- ,% " -'''''",,, ' . ","'". ' - ° , .,,' ,f ''
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for our signal, in that most of the energy is contained

in the signal for the short time that it is observed. Next K
we wanted to calculate the bandwidth so that 95% of the

energy be contained up to that frequency. The energy in "-.

the frequency domain is given by

E = (2/7r )arctan(27r f/6) (3.1-29)

The signal in (3.1-26) has been normalized so that its

total energy equals one. Therefore, from (3.1-29) we find

that for f=12, 94.9% of the energy is contained in that

part of the spectrum. Using the real part of (3.1-28) we

wanted to see how well the calculated imaginary part is to

5 the actual values. With M=256, f=12 and T=I, Fig. 3.1.6

shows the results obtained. The solid line is the real

part of (3.1-28) with a normalizing constant KR=2.0. The

actual imaginary part shown by a dashed line, overlaps to

look as if the graph is one solid line. The normalizing

constants are KI=1.O for the actual plot and KE=1.O for the

estimate plot. We see that the modified Hilbert transform

gives exact results if the limits of integration are chosen -'-'S

such that most of the energy of the signal is located be- .'"
V tween the limits. From this example we can assume that ___

the bandwidth can be chosen so that 95% of the energy is

located in that region. This way the integration does not

have to be done over the entire frequency spectrum.

, ..
*•~~,.. : -. ; ~ ~ * ~ * .~ , ' . V .* . -- . . * . . . • . • - .
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p In the next section we will use the logarithmic form of the

modified Hilbert transform to evaluate the phase of a

signal from its magnitude. We will also show a new method ",

of partitioning the spectrum to obtain better estimates of

the phase.

3.2 Phase Retrieval Problem
17

In section 3.0, we discussed how for a signal m(t) there

exists a relationship between the real and imaginary parts

of the complex logarithm of m(t). If m(t) is bandlimited,

and it can be written in phasor notation as

m(t)= jra(t)j expjj6(t) (3.2-1) -"

then by taking the complex logarithm of (3.2-1) we have

ln m(t)= inlm(t)1 +jq(t) (3.2-2)

The lnlm(t)l is the real part of the signal and 4)(t) is the

imaginary part. From this we then have that the phase 4(t)

is related to the log of the magnitude by the Hilbert trans-

form. In the notation of the modified Hilbert transform we

have

'."
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4 -(w)" -!f inJA(y)j 1-cos(w-y)T dy (3.2-3)

3. w-y

The above equation relates the phase of the spectrum with

the magnitude of the spectrum when the time signal is

causal and real. If we are dealing with an analytic sig-

nal, where the spectrum is real and contains only positive

frequency components, then the logarithmic modified

Hilbert transform is given by

4(t)=-_ f lnlm(r)l 1-cos(t-T) dr (3.2-4)

-t- 
r

As an example we will use the one-sided exponential pulse

given by (3.1-22). As a matter of convenience, we rewrite

the Fourier transform of this signal when T=1 as

F(w)= 12 (3.2-5)

6+jw

The magnitude and the phase of (3.2-5) can be calculated

to give

IA(w)I =12/(36+wt )05 (3.2-6a)

O(w)= arctan(-w/6) (3.2-6b)

4'
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From (3.2-6a) we notice that the magnitude approaches zero

when w approaches infinity. This tells us that the log of

the amplitude is not square integrable as is the necessary

condition for using the logarithmic form of the Hilbert

transform in determining the phase. In the limit as w goes

to infinity we have that the log of the magnitude also

goes to infinity, and we get

Il nA(w)I12dw o (3.2-7)

In the previous section we found that if f is chosen to be

12, that 94.9% of the energy is included in the spectrum.

It is with these limits that we would like to determine the

phase when using the logarithmic modified Hilbert trans-

form. If we take the bandwidth of the signal to be 12 we

have that with =2rf

flll~~l'dw -cc (3.2-8)

..
because within these limits the log of the magnitude never

goes to infinity. By this we have bandlimited the signal.

In Fig. 3.2.1, the solid line represents the log mag-

nitude, with a normalizing constant given by KR=1.841. The

dotted line is the phase given by (3.2-6b) with a nor-

F-_

%-
° -* 
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malizing constant KI=1.491. The estimate of the phase

using the logarithmic modified Hibert transform is shown

with the dashed line. Its normalizing constant is given by

KE=2.561. From this figure we see that the estimated

phase is incorrect. There are two reasons why the estimate

is incorrect. The first, which is hardly noticeable is

that we have bandlimited the function so that there may be

some smearing of the estimate. The second reason which is

the major one is that the magnitude has a pole in the upper

half of the z-plane. This can be seen if the log of the

magnitude is written as

in A(w) =0.5 in (144/(36+w 2 ))

=0.5 in (144/(6+jw)(6-jw)) (3.2-9)

From this we see that a pole occurs at w=j6 which is in the

upper half of the z-plane. It is because of this pole

f-a that the function is not square integrable and leads to

such poor results.

In Fig. 3.2.2 we have decided to evaluate the phase of the

same function as before for a bandwidth of f=0.1. The

horizontal line is the log of the magnitude in that region

with KR=0.693, and the actual phase and estimated phase are

superimposed over each other. The normalizing constant

for the actual phase is KI=0.104 and for the estimate
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9. KE=O.082. The estimated phase is close to the actual val-

ues. Fig.3.2.3 shows the results when the bandwidth is

increased to f=0.5. The solid line is the log of the

' " magnitude with KR=0.693, the dotted line is the actual

phase with KI=0.482, and the estimate of the phase is given

by the dashed line with KE=0.520. By increasing the band-

width of the signal we see that the estimate is less accu-

rate because the pole is having a larger effect on the

results. In Fig. 3.2.4 we have further increased the band-

width to f=2.0 with the solid line representing the log

magnitude with KR=0.693, the dotted line representing the

actual phase with KI=1.125, and the estimate given by the

dashed line with a normalizing constant KE=0.473. We see

that here there is a very large error between the estimate

and the actual value because of the pole. In order to

improve the results, methods must be introduced that will

reduce the effect of this pole.

MATHEMATICAL FILTERING METHOD

With the method described by Nikajama and Asakura [46] we

will attempt to obtain a better phase estimate by first

preprocessing the magnitude, using the method where the

magnitude squared is smoothed by convolving it with a

filter. The filter we have chosen is the Gaussian filter,

A with the understanding that there are other filters which

4 .

- **9 .944 *4 **~~~*,.



L.: 102

could have been used such as the triangular or low-pass

filter. The Gaussian filter used has zero mean and vari-

ance 0,2. Its form is given by

G(t)=exp(-t 2 /2 02 ) (3.2-10)

In Fig. 3.2.4 we saw that the estimate of the phase is

very much in error, and it is in this region that we wish

to improve the estimate. The magnitude was first smoothed

by the Gaussian filter with variance a2=4.0. The resultant

log magnitude is shown in Fig. 3.2.5 by a solid line with a

normalizing constant KR=2.461. We note that the smoothing

has raised the log magnitude above zero and has made the

function constant over a larger portion before it began to

roll off at the edges. The actual phase is given by the

dotted line with a normalizing constant KI=1.125, and the

estimated phase given by the dashed line has KE=2.390. We

see that the estimated phase is beginning to approach the

actual phase in its shape. In our next attempt the vari-

ance of the filter is lowered to o- =0.5. The log mag-

* .nitude after the smoothing is given by the solid line in

Fig. 3.2.6 with KR=2.133. The actual phase is given by

the dotted line having the same KI as before. The dashed

line which is the estimate of the phase has a normalizing

* constant of KE=1.981. The shape of the estimate has not

changed from the previous case, but the constant has de-

* . .. .-
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creased towards the desired value. After changing the

variance to ' =0.01 the estimated phase is very close to

the actual phase. Fig. 3.2.7 shows the log magnitude giv-

en by the solid line with KR=1.161. The estimated phase

given by the dashed curve is seen to follow closely the

shape of the actual phase curve given by the dotted line.

The normalizing constant for the estimate is KE=0.821 as

compared to the constant of the actual phase given by

KI=1.125. The constants are close enough that we wanted

to see how the real and imaginary parts of the spectrum

using the estimated phase, compare to the spectrum when the

actual phase is used. Fig. 3.2.8 show the real part of

the spectrum. The dotted line is the actual signal and the

dashed line is the one obtained when the estimated phase is

used. In both cases the normalizing constant is given by

7.389. The imaginary part of the spectrum is shown in Fig.

3.2.9. The dotted line is the actual curve with a nor-

malizing constant KI=2.97 and the dashed curve is the es-

timate with KE=2.46. In Fig. 3.2.10 we show the Fourier

transform of the estimated spectrum to see how closely it

relates to the actual exponential signal. As can be seen,

the dashed line which represents the estimate is in close

agreement to the actual exponential signal. The method

just described is used before the estimate is obtained.

Next we would like to discuss a method to use after the

phase has been estimated.

-. 7
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CORRECTION FACTOR METHOD

In a paper by Ford [56] a correction factor can be found

if the assumption is made that

10(w)-B Jc w > (3.2-11)

What this assumes is that for iwj > S, the phase can be

represented by a constant with only a small error in the

assumption. In the case of the exponential signal, we

have seen that the phase of the spectrum becomes constant

as it approaches f=12. Therefore, we will use the same

method as Ford to obtain a similar correction factor.

Using the modified Hilbert transform we can write the

phase S (w) as the sum of three integrals given by

S (w)=-IJK(w•y)#(y) dy K(wy) lnA(y)dy

-1J K(w,y)o(y) dy I.+ I2+I (3.2-12)

where K(w,y) is the kernel given by

,;: .. , k~g" 2k. 'X6"& a.---,', "* 5% . * '._.'/ : ;'.., ,;'-i. .. O,,,.:.,:.7-'.;.' •. < . -. ,,



105

K(w,y) = 1-cos(w-y)T (3.2-13)

w-y

If we make use of (3.2.11) we can rewrite the integrals I,

and I3 as

1-cosz dz (3.2-14a)

I,(w)=-BfW1lcosz dz (3.2-14b)

Ir -to z

It can be shown that because of the odd symmetry of I, (w)

and I(w), that (3.2-14) can be written in the form

- (%- nWr

II r+a~)- 1-cos z dz (3.2-15)N' %

which is the correction factor to bo added to (3.2-3).

Equation (3.2-15) has no closed form solution so that the

integral has to be evaluated using numerical methods. In

Fig. 3.2-11 we have evaluated the integral with B=1 and

T=1 up to f=12.0. In Fig. 3.2.12 we have added the correc-

tion factor to the phase estimate where the normalizing

constant of the estimate is KE=1•355 as compared with the .

actual KI=1.491. We see that up to f=3.75, we have been
•S.

'p_
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able to almost have an exact estimate. This tells us that

the correction factor is good only in the region where

there is a constant slope. Once the slope tends to zero,

c:. the factor is of no use. This is what is observed in Fig.

3.2.12, that in the region where the slope was getting

smaller, the correction factor was unable to improve the

estimate.

METHOD OF PARTITIONING

The method to be described here is based on partitioning

the spectrum into small intervals and estimating the phase

for that small interval. Once all the estimates have been

obtained for each interval, they are combined to form the

total estimate. If we were to take a look again at Fig.

3.2.2 we would see that in the region up to f=O.1 we were

able to obtain a close approximation of the phase. Based

on this we want to break the spectrum into intervals whose

spacing is f=O.1. What we intend to do is to shift the

log magnitude of that interval down to the dc, and eval-

uate the modified Hilbert transform to obtain an estimate

of the phase, and afterwards shift the estimate back into

ithe proper interval. In Fig. 3.2.13, we have shifted the

log magnitude of the Fourier transform of the exponential
.

signal between f=.l and f=.2 to the dc and because of the

overlap at f=O, we have made it equal to zero. (We found

- .'
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that had we added the overlap at f=O, we would have ob-

tained the same results.) By using the modified Hilbert

transform we obtained an estimate whose slope of the line

is close to the actual value. The slope of the estimate is

0.081 as compared to 0.102 of the phase in the interval

tZ. f=.1 to f=.2. In Fig. 3.2.14 we have taken the interval

f=2.0 to f=2.1 and shifted it to obtain the phase. The

iC slope of the estimated phase is 0.073 and the actual slope

is 0.019. We see that the estimate is increasing more

rapidly. Fig. 3.2.15 shows the results when the interval I'

taken was between f=6.5 and f=6.6. The slope of the esti-

mate is 0.032 as compared to the slope of the actual phase

of 0.002. We see that the slope of the estimate follows

the phase of the actual phase for the lower frequency inter-

vals. In Fig. 3.2.16 we have taken the region to f=1.0 and

divided it into 10 intervals, each of which had its log

magnitude shifted so that the phase could be determined.

Once the phase was determined, it was shifted back to its

orginal interval and added to to the previous results. We

have the slope of the estimate given by 0.804 which is very

close to the actual slope of the phase of 0.808. Ther-

efore, we have that in the case of a spectrum that contains

%a pole in the upper half of the z-plane, this method has

given good results in estimating the phase when using the

modified Hilbert transform.

o S.
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PERIODIC ANALYTIC SIGNALS

In this section we would like to take a look at a special

class of signals known as periodic analytic signals. These

signals are periodic and have the property that the spec-

trum contains components for positive frequencies only.

This is the dual of causal time signals. We are given a

time signal f(t) that can be written in the form

f(t)= I (1-a expj( 9t-8, )) (3.2-16a)
Jul

I oC exp jk91t (3.2-16b)
k-0

In (3.2-16b) we recognize this to be the Fourier series

representation of the signal f(t). The fundamental fre-

t quency is given by S1 and we see that the signal f(t) has
.

a bandwidth given by n' , and that the signal is repre-

sented in terms of only positive frequencies. Equation

(3.2-16a) is a factored form of (3.2-16b) from which the

location of the zeros can be obtained. The reason why the

zeros of f(t) are of interest is because in order to obtain

the phase of f(t) from its magnitude, all of the zeros must

* lie in the lower half of the complex z-plane. Once the

signal has been factored, all one has to do is to check the

magnitude of a1 . If the magnitude of a is less than one,

then the zero of that term, z,, is in the lower half
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plane. To see just where the zeros are located, we first

consider when a is positive with a magnitude less than

one. Then the zeros are located at

z =2 7rn+ +j ln la, (3.2-17)

where we see that since the magnitude is less than one, the

log will be negative and the zeros are in the lower half

plane. We notice that the location of the zeros are peri-

odic. If the value of a is negative and the magnitude is

less than one, the zeros are located at

= 2r(n+1)+Oi + j ln "a (3.2-18)

again showing that the zeros are periodic and located in

the lower half of the z-plane.

Let us examine the case when n=1. We have that the signal

f(t) is given by

f(t)=l - a expj(R t-6) (3.2-19)

from which we obtain the magnitude and phase as
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If(t)l= (1+ae)-2a cos(sit-e (3.2-20a)

16(t) = arctan- a sin(ilt- 6 ) (3.2-20b)

1 - a cos( 2 t-"

Using the magnitude of (3.2-20) and the Hilbert rela-

1. tionship of (3.2-4) we want to obtain an estimate of the

phase given by (3.2-20). The constants that were used are

a=0.2, T=0.5 and f=1.0 with M=256. The results are shown

in Fig. 3.2.17. the solid line is the log magnitude with a

normalizing constant given by 0.233. The actual phase is

shown by the dotted line with a normalizing constant of

KI=0.201. The estimated phase is shown by the dashed line

with KE=0.201. We can see that the estimate is a good one

with the graph almost identical to the actual graph.

In the next example we wanted to investigate the case when

n=2 and the coefficients a, are both equal to 0.2. Ther-

efore, we have
II"

f(t) = (1 -0.2 exp(j lt))2 (3.2-21)
PrI

The bandwith of this signal is 2 , . For the choice of

f=1 and T=12, the resulting phase is obtained in Fig.

3.2.18 which was obtained by taking the magnitude of

(3.2-21) and using (3.2-4). The actual phase is given by

the dotted line with KI=0.403 and the dashed line is the

.4

I.,

41



estimated phase with KE=0.416. We again see that the es-

timated phase is close, and all because the zeros of the

function are in the lower half plane, which makes it possi-

ble to use the logarithmic Hilbert transform for the deter-

mination of the phase.

In the previous cases we were investigating the signal

given in (3.2-16). We next would like to take a look at

[',-"the following type of signal

f(t)=exp(-jgt) - a exp(-jG ) (3.2-22)

One difference in this form of the signal is that rather

than f(t) having a periodic set of zeros, there is only one

given by
- .t

z= 8 +j _la. (3.2-23)

--if the constant a is positive, and

z= -r + j na (3.2-24)

if the constant a is negative. If we look at the mag-

nitude and phase we have

f(t)=(l+a2 )-2a cos(ilt-8 ) (3.2-25a)

[ ~~~~~~~......-..,, ... ,..,-....... -.. ......... ,.-....-., ,, .,. , . -, , . -.. ... , . , .....
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4.(t)=- arctan sinlt - a sin6 (3.2-25b)

cos St- a cos 8

' 4The first thing that we notice is that the magnitude of

(3.2-25) is identical to (3.2-20a) but that the phases are

not the same. By choosing Ia icl we should be able to

obtain the phase from the magnitude by using the Hilbert

transform. But we have already seen that by using

(3.2-25a) the phase that we obtain is given by (3.2-20b)

and by (3.2-25b). To see what is happening we have to

look at the Fourier transform of (3.2-19) and (3.2-22).

The Fourier transform of (3.2-19) has two impulses that are

on the positive side of the spectrum and (3.2-22) has two

impulses that are on the negative side of the spectrum.

Therefore, we see that we are unable to use the

Fphase-magnitude relationship for (3.2-25) because of the

position of the spectrum it occupies. Equation (3.2-22)

can be rewritten in the form

f(t)=exp-jSlt(l - a expj(U)t-6 )) (3.2-26)

where the bracketed term is the same as (3.2-19). There-

L fore, to obtain the phase of (3.2-25b) we must first modu-

late the signal of (3.2-22) so that is in the positive side

of the spectrum. After this the phase of the signal can be

obtained using the logarithmic Hilbert transform. Once

, ,4I.
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* -'. the phase is found, the linear phase -11t is added so that

we obtain the phase of (3.2-25).

3.3 Conclusion

We have shown a new form of the Hilbert transform, which

has the property that it possesses no singularity. It has

been applied to determining the phase from the magnitude of

the special class of signals that have no zeros in the

upper half of the z-plane. To improve the estimates be-

cause of poles, we have used smoothing, a correction fac-

N' tor, and a new method of partitioning. One advantage of

the new transform is that in evaluating the convolution We

do not use the fast Fourier transform. The reason for the

advantage is that in evaluating the convolution using the

fast Fourier transform, the frequency spread of the func-

tion may exceed the frequency domain defined by the inverse

of the sampling distance, and as a consequence the desired

*, Fourier transform of the function is distorted. Thus the

evaluation of the convolution yields a large error.

F.,.

o*.
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Fig. 3.1.1 Modified Hilbert transf'orm kernel with-
TBP=12.
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Fig. 3.2.3 Estimated phase of the spectrum of an
exponential signal for TBP=0.5 with KR=0.693,
KI=0.482 and KE=0.520.
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KI=1.25 ad KE=.473
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Fi-3.2.5 Estimated -phase of the spectrum of an
eynntial signal after Gaussian filtering with

=4I.0 where KR=2.461, K1=1.125 and KE=2,390.
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Fig. 3.2.6 Estimated phase of the spectrum of an
exponential signal after Gaussian filtering with
a2 =0.5 where KR=2.133, 1(1=1.125 and KE=1.981.
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Fig- 3.2.8 Estimated real part of spectrum of
exponential signal with KR=7.389 and KE=7.389..



128

.

ItlpI



129

r.W.

* w
IaJ

0
- t

0 •

a .5

NORMRLIZED. TIME

Fig. 3.2.10 Fourier transform of signal ob-
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Fig. 3.2.11 Correction factor for phase es-
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Fig.-3.2.14 Phase estimate of the shifted inter-
val from f=2.0 to 2.1 of the spectrum of an ex-
ponential signal where KI=O.O19 and KE=0.073.
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Fig. 3.1.15 Phase estimate of the shifted inter-
val from f=6.5 to 6.6 of the spectrum of an ex-
ponential signal where KI=0.002 and KE=0.032.
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Fig.. 3.2.16 Estimate of the phase of the spec-
trum of the exponential signal after having par-
titioned the interval into ten segments with
KI=0.808 and KE=O.804.
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Fig. 3.2.18 Phase estimate of' a periodic ana-
l.ytic signal whose bandwidth. is larger with
KI=0.403 and KE=O.416.



Chapter 4

SUrMARY AND EXTENSIONS

4.0 Introduction

A new method of resolving two frequencies spaced closely

together buried in noise has been presented. The method

involves knowing certain information about the signal a

priori. This information was used to give a set of equa-

tions where there are less unknowns than there are equa-

tions. Since the system of equations is overdetermined,

there are many possible solutions. We have selected the

solution vector which yields the minimal norm of the resid-

ual error. By so doing, we were able to resolve the two

frequencies of the signal beyond the limit imposed by the

uncertainty principle of signal processing.

A second topic that was discussed is a new form of the

Hilbert transform. An advantage of this new form is that

it takes into account for signals that have been observedr -for short time durations. One use of the Hilbert transform

is in phase estimation from magnitude measurements. This

cdn be accomplished if the signal is causal and has zeros

that occur only in the lower half of the complex z-plane.

138
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If zeros occur in the upper half of the z-plane, methods

have to be introduced to reduce the effects of the zeros

on the phase estimation. A new method for estimating the

phase was shown where the spectrum is partitioned. All

methods were demonstrated via computer simulations.

The first chapter of this thesis contains material of an

introductory nature. In Chapter 2, a new method of resolv-

ing two frequencies spaced closely together when the

time-bandwidth product is very low was presented. The

method was shown to give favorable results under low

signal-to-noise ratios. In the process of resolving the

frequencies, we obtained an estimate of the time signal.

In Chapter 3, we introduced a new form of the Hilbert trans-

form. With the new form of this transform we showed how

the phase can be estimated from the magnitude of a signal,

given that certain conditions are met. When these condi-

tions cannot be met, modifications have to be performed

before or after the estimate is obtained.

4.1 Extensions of Methods

There are many extensions that can be applied to the meth-

ods discussed in this thesis. In the case of spectral

estimation, if it is known that there are three or more

frequencies involved, then it is possible to obtain a set

°*
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of equations, and constraints on the solution vector in an

identical manner as was described in Chapter 2. In

two-dimensional signal processing such as is found in

optics, When the two-dimensional signal is seperable, it

is posible to use this method on each dimension to obtain

better resolution for impulsive type spectra. This can

be further investigated to be used for image enhancement

of electron-microscope images, bandwidth compressed video

images, and image enhancement of medical diagnostic im-

ages.

For the modified Hilbert transform, the formulation can be

extended to n-dimensions if the signals are separable in

each dimension. If involved with superresolution, methods

can be developed that will utilize some superresolving

methods to obtain a superresolving Hilbert transform. This

could be used as a constraint for the estimation ofcausal

signals that have reduced time-bandwidth products.

ft. ft
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[; APPEN DIX

Suppose we are given a set of data points

c(i), i=1,2,3,...,m( )

ane a model depending upon certain parameters x

d(i,x), i=1,2,3,...,m (2)

where x is a column vector containing n elements and we

have m> n. A way of measuring how far the model is from the

data for any choice of x is defined as the residual f(x),

and is a function of x, d(i,x), and c(i). Each of the ,S

c(i) is a real number, the d(i,x) are real-valued functions

of x and f is a real-valued nonnegative function. The

data-fitting problem consists of selecting the parameters

x so as to minimize f. These problems have more structure

Fthan do general minimization problems because f is often of

a form such as

f(x)= r(c(i)-d(i,x))

f(x)=max r(c(i)-d(i,x)) (3)

for some, simple, nonnegative function r(.).g
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This data-fitting problem is linear if d(i,x) has the form

d(i,x)=Dx (4)

where D is an mxn matrix. If all x are feasible for con-

sideration in finding the minimum of f, the problem is

unconstrained. If the x are restricted to lie in some set

S, then the problem is constrained. A common way to spec-

ify such feasible sets S is through the use of equalities

and inequalities

rz S1 l~j~x=q~) Ij=1,2,000-
S=xg(k,x)=h(k) , k=1,2,06,i (5)

As an example of such problems one mAy have (4) where f

involves summation with r(.)=( ) . This leads to the

familiar linear least-squares problem

ain f(x)- jjc-Dxj (c(i)-Dx)2 . (6)

This problem becomes a linearly constrained problem if,

for example, the elements of x must all be nonnegative.

k, If one was to restrict oneself to completely linear prob-

lems in which r=j.j , then this would involve i and l,,

data-fitting. The least-squares (12 ) criterion for meas-

-,,;.;* -, ; .,.:-. ... : **. ,**., . .. -,.; *<...... ,. ... .~ ..**. ;, , .. ,,-.. ::!
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uring the fit of a model to data is the most reasonable one

to use if it is known that the data c(i) are approximations

to certain quantities c'(i)

c(i)=c'(i)+e(i) (7)

where the errors e(i) are all normally distributed with

zero mean and common variance. This is the case when the

,t. c(i) result from careful, bias-free observations of well

behaved systems. However, if this is not the case then two

other situations are very important:

(1) the observations are not always careful or

bias-free, or the system is not always well-behaved (1, ),.

(2) the measurements are exact, and all errors are zero

In (1) there may be occasional errors e(i) which are quite

wild. It is desirable to ignore the corresponding observa-

tions and fit the model only to the good data. In (2), it

is desired to get the model evenly close to every one of the

observations c(i). The 1, norm can be expressed as

f(x)= lc(i)-Dxl= Ijc-Dxjj, (8)

and the l norm can be expressed as

f(x)=rnxj c(i)-Dxl=Ilc-DxIl*(
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The former case is of interest to statisticians (as robust

regression) and the latter case to mathematicians (function

approximation).

To see the difference between the three norms, Fig. (A.1)

shows observations made of a 450 line over a unit square.

If these observations are subject to minor random fluctua-

tions, and if an attempt is made to fit the observations

with a straight line, the lo , 1 , lj norms result in

approximately the same solution as seen in Fig. (A.1). On

the other hand, if one of the observations is widely at

U odds with the others, then the 11 line will not be dis-

turbed, the 12 line will be displaced somewhat towards

the wild point, and the 100 line will be centered between

the wild point and the remaining ones as shown in Fig.

(A.2).

It is for these reasons that the solution to the problem of

section 3.1 will be solved for using the 11 norm. The

data c(i) is very noisy causing wild fluctuations in the

data, and it is the l norm that will fit the model to

the good data only.

The linear problem of section 3.1 can be written in the

form
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minimize (c(i)-Dx)

subject 'to Px~q

Gx=h (10)

whose solution can be arrived at using linear programming.

Since the solution x and the residual need both be negative

as well as positive, and because linear programming gives 9

only positive solutions, 3m additive variables must be

introduced. This gives us

c-Dx+dy=v-u

v~0

so that (10) can 'be written as

minimize U wiv

subject to Px-Py =q.

Gx-Gy =h 9h

Dx-Dy-u+v= c (12)

which can be solved by a method such as the simplex method.
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